Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 10, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310144

RESUMO

Otitis media (OM) is one of the most globally pervasive pediatric conditions. Translocation of nasopharynx-resident opportunistic pathogens like nontypeable Haemophilus influenzae (NTHi) assimilates into polymicrobial middle ear biofilms, which promote OM pathogenesis and substantially diminish antibiotic efficacy. Oral or tympanostomy tube (TT)-delivered antibiotics remain the standard of care (SOC) despite consequences including secondary infection, dysbiosis, and antimicrobial resistance. Monoclonal antibodies (mAb) against two biofilm-associated structural proteins, NTHi-specific type IV pilus PilA (anti-rsPilA) and protective tip-region epitopes of NTHi integration host factor (anti-tip-chimer), were previously shown to disrupt biofilms and restore antibiotic sensitivity in vitro. However, the additional criterion for clinical relevance includes the absence of consequential microbiome alterations. Here, nine chinchilla cohorts (n = 3/cohort) without disease were established to evaluate whether TT delivery of mAbs disrupted nasopharyngeal or fecal microbiomes relative to SOC-OM antibiotics. Cohort treatments included a 7d regimen of oral amoxicillin-clavulanate (AC) or 2d regimen of TT-delivered mAb, AC, Trimethoprim-sulfamethoxazole (TS), ofloxacin, or saline. Fecal and nasopharyngeal lavage (NPL) samples were collected before and several days post treatment (DPT) for 16S sequencing. While antibiotic-treated cohorts displayed beta-diversity shifts (PERMANOVA, P < 0.05) and reductions in alpha diversity (q < 0.20) relative to baseline, mAb antibodies failed to affect diversity, indicating maintenance of a eubiotic state. Taxonomic and longitudinal analyses showed blooms in opportunistic pathogens (ANCOM) and greater magnitudes of compositional change (P < 0.05) following broad-spectrum antibiotic but not mAb treatments. Collectively, results showed broad-spectrum antibiotics induced significant fecal and nasopharyngeal microbiome disruption regardless of delivery route. Excitingly, biofilm-targeting antibodies had little effect on fecal and nasopharyngeal microbiomes.


Assuntos
Antibacterianos , Otite Média , Animais , Criança , Humanos , Antibacterianos/uso terapêutico , Chinchila , Padrão de Cuidado , Otite Média/tratamento farmacológico , Orelha Média/patologia , Biofilmes , Nasofaringe/patologia
2.
Laryngoscope ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597166

RESUMO

OBJECTIVES: We examined sinus mucosal samples recovered from pediatric chronic rhinosinusitis (CRS) patients for the presence of Z-form extracellular DNA (eDNA) due to its recently elucidated role in pathogenesis of disease. Further, we immunolabeled these specimens for the presence of both members of the bacterial DNA-binding DNABII protein family, integration host factor (IHF) and histone-like protein (HU), due to their known role in converting common B-DNA to the rare Z-form. METHODS: Sinus mucosa samples recovered from 20 patients during functional endoscopic sinus surgery (FESS) were immunolabelled for B- and Z-DNA, as well as for both bacterial DNABII proteins. RESULTS: Nineteen of 20 samples (95%) included areas rich in eDNA, with the majority in the Z-form. Areas positive for B-DNA were restricted to the most distal regions of the mucosal specimen. Labeling for both DNABII proteins was observed on B- and Z-DNA, which aligned with the role of these proteins in the B-to-Z DNA conversion. CONCLUSIONS: Abundant Z-form eDNA in culture-positive pediatric CRS samples suggested that bacterial DNABII proteins were responsible for the conversion of eukaryotic B-DNA that had been released into the luminal space by PMNs during NETosis, to the Z-form. The presence of both DNABII proteins on B-DNA and Z-DNA supported the known role of these bacterial proteins in the B-to-Z DNA conversion. Given that Z-form DNA both stabilizes the bacterial biofilm and inactivates PMN NET-mediated killing of trapped bacteria, we hypothesize that this conversion may be contributing to the chronicity and recalcitrance of CRS to treatment. LEVEL OF EVIDENCE: Not applicable Laryngoscope, 2023.

3.
Biofilm ; 4: 100096, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36532267

RESUMO

The biofilm state is the preferred lifestyle of bacteria in nature. Within a biofilm, the resident bacteria are protected from environmental stresses, antibiotics and other antimicrobials, including those due to multiple immune effectors of their host during conditions of disease. Thereby, biofilms contribute significantly to pathogenicity, recalcitrance to clearance and chronicity/recurrence of bacterial diseases, including diseases of the respiratory tract. In the absence of highly effective, biofilm-targeted therapeutics, antibiotics are commonly prescribed to attempt to treat these diseases, however, in light of the canonical resistance of biofilm-resident bacteria to antibiotic-mediated killing, this ineffectual practice often fails to resolve the diseased condition and contributes significantly to the global threat of rising antimicrobial resistance. Nontypeable Haemophilus influenzae is a common respiratory tract disease co-pathogen, often present in partnership with other airway pathogens. Herein we aspired to determine whether either of two monoclonal antibodies we developed, one specific for NTHI [directed against the majority subunit (PilA) of the type IV pilus (T4P) of NTHI] and the other able to act agnostically on all bacteria tested to date (directed against a structural protein of the biofilm matrix, a DNABII protein), were able to disrupt 2-genera biofilms wherein NTHI co-partnered with another respiratory tract pathogen. These monoclonals were tested singly as well as when within an antibody cocktail. The monoclonal directed against the NTHI antigen PilA was only effective on single species NTHI biofilms and not on single species biofilms formed by other unrelated species. However, when NTHI co-partnered with any of 5 respiratory tract pathogens tested here (Burkholderia cenocepacia, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae or Moraxella catarrhalis), this exclusively NTHI-directed monoclonal was able to disrupt these 2-genera biofilms. Conversely, the monoclonal antibody directed against protective epitopes of a DNABII protein, significantly disrupted all single species and 2-genera biofilms, which reflected the universal presence of this structural protein in all tested biofilm matrices. However, greatest release of both pathogens from a 2-genera biofilm was uniformly achieved by incubation with a 1:1 cocktail of both monoclonals. These data support the use of an approach wherein patients with respiratory tract disease could be treated with a therapeutic monoclonal antibody cocktail to release NTHI and its common co-pathogens from the protective biofilm to be killed by either traditional antibiotics and/or host immune effectors.

4.
mBio ; 13(1): e0217721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012346

RESUMO

Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMß2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Cricetinae , Animais , Humanos , Feminino , Antígeno de Macrófago 1/metabolismo , HIV-1/metabolismo , Cricetulus , Células Epiteliais/microbiologia , Células CHO , Transcitose , Polissacarídeos/metabolismo
5.
Cell ; 184(23): 5740-5758.e17, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735796

RESUMO

Biofilms are community architectures adopted by bacteria inclusive of a self-formed extracellular matrix that protects resident bacteria from diverse environmental stresses and, in many species, incorporates extracellular DNA (eDNA) and DNABII proteins for structural integrity throughout biofilm development. Here, we present evidence that this eDNA-based architecture relies on the rare Z-form. Z-form DNA accumulates as biofilms mature and, through stabilization by the DNABII proteins, confers structural integrity to the biofilm matrix. Indeed, substances known to drive B-DNA into Z-DNA promoted biofilm formation whereas those that drive Z-DNA into B-DNA disrupted extant biofilms. Importantly, we demonstrated that the universal bacterial DNABII family of proteins stabilizes both bacterial- and host-eDNA in the Z-form in situ. A model is proposed that incorporates the role of Z-DNA in biofilm pathogenesis, innate immune response, and immune evasion.


Assuntos
Bactérias/genética , Biofilmes , DNA Bacteriano/química , Matriz Extracelular/metabolismo , Espaço Extracelular/química , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chinchila , DNA Cruciforme , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Acetato de Tetradecanoilforbol/farmacologia
6.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396989

RESUMO

Herein, we describe an extracellular function of the vertebrate high-mobility group box 1 protein (HMGB1) in the proliferation of bacterial biofilms. Within host cells, HMGB1 functions as a DNA architectural protein, similar to the ubiquitous DNABII family of bacterial proteins; despite that, these proteins share no amino acid sequence identity. Extracellularly, HMGB1 induces a proinflammatory immune response, whereas the DNABII proteins stabilize the extracellular DNA-dependent matrix that maintains bacterial biofilms. We showed that when both proteins converged on extracellular DNA within bacterial biofilms, HMGB1, unlike the DNABII proteins, disrupted biofilms both in vitro (including the high-priority ESKAPEE pathogens) and in vivo in 2 distinct animal models, albeit with induction of a strong inflammatory response that we attenuated by a single engineered amino acid change. We propose a model where extracellular HMGB1 balances the degree of induced inflammation and biofilm containment without excessive release of biofilm-resident bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteína HMGB1/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Animais , Proteínas de Bactérias/imunologia , Chinchila , DNA Bacteriano/imunologia , Matriz Extracelular/imunologia , Armadilhas Extracelulares/imunologia , Feminino , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Neutrófilos/imunologia
7.
BMC Microbiol ; 19(1): 276, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818247

RESUMO

BACKGROUND: Moraxella catarrhalis is a leading cause of otitis media (OM) and chronic obstructive pulmonary disease (COPD). M. catarrhalis contains a Type III DNA adenine methyltransferase (ModM) that is phase-variably expressed (i.e., its expression is subject to random, reversible ON/OFF switching). ModM has six target recognition domain alleles (modM1-6), and we have previously shown that modM2 is the predominant allele, while modM3 is associated with OM. Phase-variable DNA methyltransferases mediate epigenetic regulation and modulate pathogenesis in several bacteria. ModM2 of M. catarrhalis regulates the expression of a phasevarion containing genes important for colonization and infection. Here we describe the phase-variable expression of modM3, the ModM3 methylation site and the suite of genes regulated within the ModM3 phasevarion. RESULTS: Phase-variable expression of modM3, mediated by variation in length of a 5'-(CAAC)n-3' tetranucleotide repeat tract in the open reading frame was demonstrated in M. catarrhalis strain CCRI-195ME with GeneScan fragment length analysis and western immunoblot. We determined that ModM3 is an active N6-adenine methyltransferase that methylates the sequence 5'-ACm6ATC-3'. Methylation was detected at all 4446 5'-ACATC-3' sites in the genome when ModM3 is expressed. RNASeq analysis identified 31 genes that are differentially expressed between modM3 ON and OFF variants, including five genes that are involved in the response to oxidative and nitrosative stress, with potential roles in biofilm formation and survival in anaerobic environments. An in vivo chinchilla (Chinchilla lanigera) model of otitis media demonstrated that transbullar challenge with the modM3 OFF variant resulted in an increased middle ear bacterial load compared to a modM3 ON variant. In addition, co-infection experiments with NTHi and M. catarrhalis modM3 ON or modM3 OFF variants revealed that phase variation of modM3 altered survival of NTHi in the middle ear during early and late stage infection. CONCLUSIONS: Phase variation of ModM3 epigenetically regulates the expression of a phasevarion containing multiple genes that are potentially important in the progression of otitis media.


Assuntos
Viabilidade Microbiana/genética , Moraxella catarrhalis/enzimologia , Moraxella catarrhalis/genética , Otite Média/microbiologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Animais , Proteínas de Bactérias/genética , Chinchila , Modelos Animais de Doenças , Epigênese Genética , Feminino , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Infecções por Moraxellaceae/microbiologia
8.
J Pediatr Infect Dis ; 14(2): 69-77, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30853830

RESUMO

Otitis media (OM) is one of the most common diseases of childhood, and nontypeable Haemophilus influenzae (NTHI) is the predominant causative agent of chronic and recurrent OM, as well as OM for which treatment has failed. Moreover, NTHI is now as important a causative agent of acute OM as the pneumococcus. NTHI colonizes the human nasopharynx asymptomatically. However, upon perturbation of the innate and physical defenses of the airway by upper respiratory tract viral infection, NTHI can replicate, ascend the Eustachian tube, gain access to the normally sterile middle ear space, and cause disease. Bacterial biofilms within the middle ear, including those formed by NTHI, contribute to the chronic and recurrent nature of this disease. These multicomponent structures are highly resistant to clearance by host defenses and elimination by traditional antimicrobial therapies. Herein, we review several strategies utilized by NTHI in order to persist within the human host and interventions currently under investigation to prevent and/or resolve NTHI-induced diseases of the middle ear and uppermost airway.

9.
Sci Rep ; 8(1): 8756, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884793

RESUMO

The obesity pandemic in the obstetrical population plus increased frequency of Cesarean delivery (CD) has increased vulnerability to surgical site infection (SSI). Here we characterized the microbiome at the site of skin incision before and after CD. Skin and relevant surgical sites were sampled before and after surgical antisepsis from obese (n = 31) and non-obese (n = 27) pregnant women. We quantified bacterial biomass by qPCR, microbial community composition by 16sRNA sequencing, assigned operational taxonomic units, and stained skin biopsies from incision for bacteria and biofilms. In obese women, incision site harbors significantly higher bacterial biomass of lower diversity. Phylum Firmicutes predominated over Actinobacteria, with phylotypes Clostridales and Bacteroidales over commensal Staphylococcus and Propionbacterium spp. Skin dysbiosis increased post-surgical prep and at end of surgery. Biofilms were identified post-prep in the majority (73%) of skin biopsies. At end of surgery, incision had significant gains in bacterial DNA and diversity, and obese women shared more genera with vagina and surgeon's glove in CD. Our findings suggest microbiota at incision differs between obese and non-obese pregnant women, and changes throughout CD. An interaction between vaginal and cutaneous dysbiosis at the incision site may explain the a priori increased risk for SSI among obese pregnant women.


Assuntos
Bactérias/isolamento & purificação , Cesárea/efeitos adversos , Obesidade/complicações , Obesidade/microbiologia , Pele/microbiologia , Infecção da Ferida Cirúrgica/etiologia , Infecção da Ferida Cirúrgica/microbiologia , Bactérias/classificação , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Disbiose/etiologia , Disbiose/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Humanos , Microbiota , Gravidez , Fatores de Risco
10.
mBio ; 8(6)2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259083

RESUMO

Biofilms formed in the middle ear by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and refractive nature of otitis media (OM). However, mechanisms that underlie the emergence of specific NTHI biofilm structures are unclear. We combined computational analysis tools and in silico modeling rooted in statistical physics with confocal imaging of NTHI biofilms formed in vitro during static culture in order to identify mechanisms that give rise to distinguishing morphological features. Our analysis of confocal images of biofilms formed by NTHI strain 86-028NP using pair correlations of local bacterial densities within sequential planes parallel to the substrate showed the presence of fractal structures of short length scales (≤10 µm). The in silico modeling revealed that extracellular DNA (eDNA) and type IV pilus (Tfp) expression played important roles in giving rise to the fractal structures and allowed us to predict a substantial reduction of these structures for an isogenic mutant (ΔcomE) that was significantly compromised in its ability to release eDNA into the biofilm matrix and had impaired Tfp function. This prediction was confirmed by analysis of confocal images of in vitro ΔcomE strain biofilms. The fractal structures potentially generate niches for NTHI survival in the hostile middle ear microenvironment by dramatically increasing the contact area of the biofilm with the surrounding environment, facilitating nutrient exchange, and by generating spatial positive feedback to quorum signaling.IMPORTANCE NTHI is a major bacterial pathogen for OM, which is a common ear infection in children worldwide. Chronic OM is associated with bacterial biofilm formation in the middle ear; therefore, knowledge of the mechanisms that underlie NTHI biofilm formation is important for the development of therapeutic strategies for NTHI-associated OM. Our combined approach using confocal imaging of NTHI biofilms formed in vitro and mathematical tools for analysis of pairwise density correlations and agent-based modeling revealed that eDNA and Tfp expression were important factors in the development of fractal structures in NTHI biofilms. These structures may help NTHI survive in hostile environments, such as the middle ear. Our in silico model can be used in combination with laboratory or animal modeling studies to further define the mechanisms that underlie NTHI biofilm development during OM and thereby guide the rational design of, and optimize time and cost for, benchwork and preclinical studies.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Fímbrias Bacterianas/metabolismo , Haemophilus influenzae/fisiologia , Simulação por Computador , Processamento de Imagem Assistida por Computador , Microscopia Confocal
11.
Proc Natl Acad Sci U S A ; 114(32): E6632-E6641, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28696280

RESUMO

Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Haemophilus influenzae/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Haemophilus influenzae/genética , Sistemas de Secreção Tipo IV/genética
12.
Laryngoscope ; 126(8): 1946-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27426942

RESUMO

OBJECTIVES/HYPOTHESIS: Otitis media is a common problem in the pediatric population. Despite antibiotic therapy, post-tympanostomy otorrhea can be difficult to treat. Biofilms have been shown to play a role in chronic and recurrent otitis media and are implicated in otorrhea. This study investigated both the microbial composition and the presence of biofilm fragments rich in extracellular DNA (eDNA) and the bacterial DNA-binding protein, integration host factor (IHF), in post-tympanostomy tube otorrhea. STUDY DESIGN: Clinical samples. METHODS: Institutional review board approval was obtained, and samples were recovered from pediatric patients with tympanostomy tubes and persistent otorrhea for both microbial culture and biofilm analysis. For biofilm assessment, frozen samples were sectioned and then labeled using a rabbit anti-IHF, which was detected with goat anti-rabbit IgG conjugated to AlexaFluor 594. Samples were then counterstained with 4',6-diamidino-2-phenylindole (DAPI) to detect DNA, and images were captured by inverted light microscopy. RESULTS: Of 15 pediatric otorrhea samples analyzed, nine (60%) contained solids that were positive for labeling of IHF in association with a lattice of eDNA, and 75% yielded positive bacterial cultures. Bacterial culture results included H. influenzae, Methicillin-resistant Staphylococcus aureus, S. pneumoniae, M. catarrhalis, and P. aeruginosa. CONCLUSION: Positive labeling of otorrhea solids for eDNA and IHF, in combination with microbiological culture results, indicated that biofilms likely played a key role in chronic otorrhea. Moreover, as a known critical structural component of biofilms, these findings suggest that DNABII proteins in association with eDNA may serve as an important therapeutic target in post-tympanostomy tube otorrhea. LEVEL OF EVIDENCE: NA. Laryngoscope, 126:1946-1951, 2016.


Assuntos
Biofilmes , Ventilação da Orelha Média , Otite Média com Derrame/microbiologia , Complicações Pós-Operatórias/microbiologia , Criança , DNA Bacteriano/análise , Humanos , Fatores Hospedeiros de Integração/análise
13.
J Infect Dis ; 214(5): 817-24, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288538

RESUMO

Several human-adapted bacterial pathogens use a phasevarion (ie, a phase-variable regulon) to rapidly and reversibly regulate the expression of many genes, which include known virulence factors, yet the influence of phasevarion-mediated regulation in pathogenesis remains poorly understood. Here we examine the impact of the nontypeable Haemophilus influenzae (NTHI) ModA2 phasevarion on pathogenesis and disease severity in a chinchilla model of experimental otitis media. Chinchillas were challenged with NTHI variant populations that were either inoculated ON and remained ON, inoculated OFF and shifted ON, or inoculated OFF and remained OFF, within the middle ear. We show that populations that shift from OFF to ON within the middle ear induce significantly greater disease severity than populations that are unable to shift. These observations support the importance of phasevarion switching in NTHI pathogenesis and the necessity to considered phasevarion regulation when developing methods to treat and prevent infection.


Assuntos
Variação Antigênica , Antígenos de Bactérias/imunologia , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/patologia , Haemophilus influenzae/patogenicidade , Otite Média/microbiologia , Otite Média/patologia , Animais , Antígenos de Bactérias/genética , Chinchila , Estudos de Coortes , Modelos Animais de Doenças , Índice de Gravidade de Doença
14.
EBioMedicine ; 10: 33-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27342872

RESUMO

The vast majority of chronic and recurrent bacterial diseases are attributed to the presence of a recalcitrant biofilm that contributes significantly to pathogenesis. As such, these diseases will require an innovative therapeutic approach. We targeted DNABII proteins, an integral component of extracellular DNA (eDNA) which is universally found as part of the pathogenic biofilm matrix to develop a biofilm disrupting therapeutic. We show that a cocktail of monoclonal antibodies directed against specific epitopes of a DNABII protein is highly effective to disrupt diverse biofilms in vitro as well as resolve experimental infection in vivo, in both a chinchilla and murine model. Combining this monoclonal antibody cocktail with a traditional antibiotic to kill bacteria newly released from the biofilm due to the action of the antibody cocktail was highly effective. Our results strongly support these monoclonal antibodies as attractive candidates for lead optimization as a therapeutic for resolution of bacterial biofilm diseases.


Assuntos
Anticorpos Monoclonais/farmacologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , DnaB Helicases/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas , Animais , Antibacterianos/farmacologia , Anticorpos Monoclonais/química , Especificidade de Anticorpos/imunologia , Infecções Bacterianas/tratamento farmacológico , Chinchila , Modelos Animais de Doenças , DnaB Helicases/química , Masculino , Camundongos , Modelos Moleculares , Otite Média/tratamento farmacológico , Otite Média/imunologia , Otite Média/microbiologia , Otite Média/patologia , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos/metabolismo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Ligação Proteica , Conformação Proteica , Reprodutibilidade dos Testes
15.
Nat Commun ; 6: 7828, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215614

RESUMO

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.


Assuntos
Adaptação Fisiológica/genética , Metilação de DNA/genética , DNA Bacteriano/genética , Epigênese Genética , Haemophilus influenzae/genética , Evasão da Resposta Imune/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Alelos , Animais , Sequência de Bases , Biofilmes , Chinchila , Modelos Animais de Doenças , Orelha Média , Haemophilus influenzae/imunologia , Haemophilus influenzae/patogenicidade , Dados de Sequência Molecular , Otite Média/microbiologia , Virulência/genética
16.
J Infect Dis ; 212(4): 645-53, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712964

RESUMO

Hia is a major adhesin of nontypeable Haemophilus influenzae (NTHi) and has long been investigated as a vaccine candidate. Here we show that Hia phase variation is controlled by changes in the length of a polythymidine tract located in the hia promoter. Studies of an invasive clinical isolate (strain R2866) show that strains expressing high Hia levels are more efficiently killed by opsonophagocytosis. An opsonophagocytic assay was used to select for a subpopulation of variants that expressed a low level of Hia, which facilitated their escape from killing by anti-Hia antisera. Conversely, a subpopulation of variants expressing a high level of Hia was selected for during passaging through Chang cells. In both cases, phase variation of Hia expression corresponded directly with discrete modal changes in polythymidine tract length. In the chinchilla model of NTHi infection, we observed consistent selection for high Hia expression upon nasopharyngeal colonization, confirming the key role of phase-variable expression of Hia within a specific niche in vivo.


Assuntos
Adesinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/classificação , Adesinas Bacterianas/genética , Animais , Portador Sadio , Linhagem Celular , Chinchila , Fluorescência , Humanos , Nasofaringe/microbiologia , Otite Média/microbiologia , Otite Média/patologia , Reação em Cadeia da Polimerase/métodos
17.
Mol Microbiol ; 96(2): 276-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25597921

RESUMO

Despite resulting in a similar overall outcome, unlike antibodies directed against the DNABII protein, integration host factor (IHF), which induce catastrophic structural collapse of biofilms formed by nontypeable Haemophilus influenzae (NTHI), those directed against a recombinant soluble form of PilA [the majority subunit of Type IV pili (Tfp) produced by NTHI], mediated gradual 'top-down' dispersal of NTHI from biofilms. This dispersal occurred via a mechanism that was dependent upon expression of both PilA (and by inference, Tfp) and production of AI-2 quorum signaling molecules by LuxS. The addition of rsPilA to a biofilm-targeted therapeutic vaccine formulation comprised of IHF plus the powerful adjuvant dmLT and delivered via a noninvasive transcutaneous immunization route induced an immune response that targeted two important determinants essential for biofilm formation by NTHI. This resulted in significantly earlier eradication of NTHI from both planktonic and adherent populations in the middle ear, disruption of mucosal biofilms already resident within middle ears prior to immunization and rapid resolution of signs of disease in an animal model of experimental otitis media. These data support continued development of this novel combinatorial immunization approach for resolution and/or prevention of multiple diseases of the respiratory tract caused by NTHI.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos/imunologia , Proteínas de Bactérias/imunologia , Biofilmes , Liases de Carbono-Enxofre/imunologia , Fímbrias Bacterianas/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/imunologia , Otite Média/microbiologia , Animais , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Chinchila , Feminino , Fímbrias Bacterianas/genética , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/genética , Haemophilus influenzae/fisiologia , Humanos , Imunização , Masculino , Otite Média/imunologia , Otite Média/prevenção & controle
18.
Infect Immun ; 83(3): 950-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547799

RESUMO

Nontypeable Haemophilus influenzae (NTHI) forms biofilms in the middle ear during human infection. The biofilm matrix of NTHI contains extracellular DNA. We show that NTHI possesses a potent nuclease, which is a homolog of the thermonuclease of Staphylococcus aureus. Using a biofilm dispersal assay, studies showed a biofilm dispersal pattern in the parent strain, no evidence of dispersal in the nuclease mutant, and a partial return of dispersion in the complemented mutant. Quantitative PCR of mRNA from biofilms from a 24-h continuous flow system demonstrated a significantly increased expression of the nuclease from planktonic organisms compared to those in the biofilm phase of growth (P < 0.042). Microscopic analysis of biofilms grown in vitro showed that in the nuclease mutant the nucleic acid matrix was increased compared to the wild-type and complemented strains. Organisms were typically found in large aggregates, unlike the wild-type and complement biofilms in which the organisms were evenly dispersed throughout the biofilm. At 48 h, the majority of the organisms in the mutant biofilm were dead. The nuclease mutant formed a biofilm in the chinchilla model of otitis media and demonstrated a propensity to also form similar large aggregates of organisms. These studies indicate that NTHI nuclease is involved in biofilm remodeling and organism dispersal.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/genética , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Sequência de Aminoácidos , Animais , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Chinchila , DNA/metabolismo , Desoxirribonucleases/metabolismo , Orelha Média/microbiologia , Orelha Média/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Espaço Extracelular/química , Expressão Gênica , Haemophilus influenzae/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação , Otite Média/microbiologia , Otite Média/patologia , Plâncton/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/química , Staphylococcus aureus/enzimologia
19.
Mol Microbiol ; 93(6): 1246-58, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069521

RESUMO

The extracellular polymeric substance produced by many human pathogens during biofilm formation often contains extracellular DNA (eDNA). Strands of bacterial eDNA within the biofilm matrix can occur in a lattice-like network wherein a member of the DNABII family of DNA-binding proteins is positioned at the vertex of each crossed strand. To date, treatment of all biofilms tested with antibodies directed against one DNABII protein, Integration Host Factor (IHF), results in significant disruption. Here, using non-typeable Haemophilus influenzae as a model organism, we report that this effect was rapid, IHF-specific and mediated by binding of transiently dissociated IHF by anti-IHF even when physically separated from the biofilm by a nucleopore membrane. Further, biofilm disruption fostered killing of resident bacteria by previously ineffective antibiotics. We propose the mechanism of action to be the sequestration of IHF upon dissociation from the biofilm eDNA, forcing an equilibrium shift and ultimately, collapse of the biofilm. Further, antibodies against a peptide positioned at the DNA-binding tips of IHF were as effective as antibodies directed against the native protein. As incorporating eDNA and associated DNABII proteins is a common strategy for biofilms formed by multiple human pathogens, this novel therapeutic approach is likely to have broad utility.


Assuntos
Anticorpos/farmacologia , Biofilmes/efeitos dos fármacos , Haemophilus influenzae/fisiologia , Fatores Hospedeiros de Integração/metabolismo , Antibacterianos/farmacologia , DNA Bacteriano/metabolismo , Mapeamento de Epitopos , Haemophilus influenzae/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Cinética
20.
Laryngoscope ; 124(3): 608-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23904321

RESUMO

OBJECTIVES/HYPOTHESIS: The hypothesis is that signature bacterial proteins can be identified in sinus secretions via high-throughput, proteomic based techniques. Nontypeable Haemophilus influenzae (NTHI) is the most common bacterial pathogen associated with sinusitis and serves as proof of principle pathogen for identifying biomarkers. STUDY DESIGN: In vitro and in vivo studies using proteomic-based analysis of cultures of NTHI and a novel, experimental chinchilla polymicrobial sinusitis model. METHODS: Nano-liquid chromatography /tandem mass spectrometry (nano-LC-MS/MS) was performed to annotate the secretome from an NTHI biofilm. A model of NTHI-induced sinusitis was developed in a chinchilla, and NTHI proteins were detected in chinchilla secretions. A reference standard RT-PCR-based assay was adapted to allow for sensitivity and specificity testing of the identified signature biomarkers in human patients. RESULTS: Outer membrane proteins P2 (OMP-P2) and P5 (OMP-P5) were identified as promising candidates for the detection of NTHI biofilms and positively detected in nasopharyngeal secretions of chinchillas experimentally infected with NTHI. An RT-PCR based test for the presence of NTHI biofilms demonstrated 100% sensitivity and 100% specificity when tested against eight unique strains commonly found in human bacterial rhinosinusitis. CONCLUSIONS: Proteomic analysis was successful in identifying signature proteins for possible use as a biomarker for chronic rhinosinusitis (CRS). OMP-P2 and OMP-P5 were validated as promising candidates and were positively detected from nasopharyngeal secretions from chinchillas experimentally infected with NTHI. Collectively, these data support the use of OMP-P2 and OMP-P5 as biomarkers for a human clinical trial to develop a point-of-care medical diagnostic test to assist in the diagnosis and treatment of CRS.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Haemophilus/diagnóstico , Haemophilus influenzae/classificação , Rinite/diagnóstico , Sinusite/diagnóstico , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Biomarcadores/metabolismo , Chinchila , Doença Crônica , Modelos Animais de Doenças , Infecções por Haemophilus/genética , Haemophilus influenzae/genética , Humanos , Técnicas In Vitro , Assistência ao Paciente , Proteômica , Melhoria de Qualidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Rinite/microbiologia , Sensibilidade e Especificidade , Sinusite/microbiologia , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...